Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.029
Filtrar
1.
Cells ; 13(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667332

RESUMEN

A deficiency in the shortest dystrophin-gene product, Dp71, is a pivotal aggravating factor for intellectual disabilities in Duchenne muscular dystrophy (DMD). Recent advances in preclinical research have achieved some success in compensating both muscle and brain dysfunctions associated with DMD, notably using exon skipping strategies. However, this has not been studied for distal mutations in the DMD gene leading to Dp71 loss. In this study, we aimed to restore brain Dp71 expression in the Dp71-null transgenic mouse using an adeno-associated virus (AAV) administrated either by intracardiac injections at P4 (ICP4) or by bilateral intracerebroventricular (ICV) injections in adults. ICP4 delivery of the AAV9-Dp71 vector enabled the expression of 2 to 14% of brain Dp71, while ICV delivery enabled the overexpression of Dp71 in the hippocampus and cortex of adult mice, with anecdotal expression in the cerebellum. The restoration of Dp71 was mostly located in the glial endfeet that surround capillaries, and it was associated with partial localization of Dp71-associated proteins, α1-syntrophin and AQP4 water channels, suggesting proper restoration of a scaffold of proteins involved in blood-brain barrier function and water homeostasis. However, this did not result in significant improvements in behavioral disturbances displayed by Dp71-null mice. The potential and limitations of this AAV-mediated strategy are discussed. This proof-of-concept study identifies key molecular markers to estimate the efficiencies of Dp71 rescue strategies and opens new avenues for enhancing gene therapy targeting cognitive disorders associated with a subgroup of severely affected DMD patients.


Asunto(s)
Encéfalo , Dependovirus , Distrofina , Proteínas de la Membrana , Proteínas Musculares , Animales , Distrofina/metabolismo , Distrofina/genética , Dependovirus/genética , Dependovirus/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Vectores Genéticos/administración & dosificación , Conducta Animal , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Terapia Genética/métodos , Ratones Noqueados , Masculino , Acuaporina 4/metabolismo , Acuaporina 4/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética
2.
Acta Neuropathol ; 147(1): 76, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658413

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies. To address these knowledge gaps, we conducted a comprehensive 'stage-dependent' investigation of immune cell elements in situ in human NMOSD lesions, based on neuropathological techniques for autopsied/biopsied CNS materials. The present study provided three major findings. First, activated or netting neutrophils and melanoma cell adhesion molecule-positive (MCAM+) helper T (TH) 17/cytotoxic T (TC) 17 cells are prominent, and the numbers of these correlate with the size of NMOSD lesions in the initial or early-active stages. Second, forkhead box P3-positive (FOXP3+) regulatory T (Treg) cells are recruited to NMOSD lesions during the initial, early-active or late-active stages, suggesting rapid suppression of proinflammatory autoimmune events in the active stages of NMOSD. Third, compartmentalized resident memory immune cells, including CD103+ tissue-resident memory T (TRM) cells with long-lasting inflammatory potential, are detected under "standby" conditions in all stages. Furthermore, CD103+ TRM cells express high levels of granzyme B/perforin-1 in the initial or early-active stages of NMOSD in situ. We infer that stage-dependent compartmentalized immune traits orchestrate the pathology of anti-AQP4 antibody-guided NMOSD in situ. Our work further suggests that targeting activated/netting neutrophils, MCAM+ TH17/TC17 cells, and CD103+ TRM cells, as well as promoting the expansion of FOXP3+ Treg cells, may be effective in treating and preventing relapses of NMOSD.


Asunto(s)
Acuaporina 4 , Autoanticuerpos , Neuromielitis Óptica , Neutrófilos , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/patología , Acuaporina 4/inmunología , Humanos , Neutrófilos/inmunología , Neutrófilos/patología , Femenino , Autoanticuerpos/inmunología , Masculino , Persona de Mediana Edad , Memoria Inmunológica , Adulto , Anciano , Células Th17/inmunología , Células Th17/patología
3.
Front Immunol ; 15: 1320094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576611

RESUMEN

Background: Myelin oligodendrocyte glycoprotein antibody (MOG) immunoglobulin G (IgG)-associated disease (MOGAD) has clinical and pathophysiological features that are similar to but distinct from those of aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (AQP4-NMOSD). MOG-IgG and AQP4-IgG, mostly of the IgG1 subtype, can both activate the complement system. Therefore, we investigated whether the levels of serum complement components, regulators, and activation products differ between MOGAD and AQP4-NMOSD, and if complement analytes can be utilized to differentiate between these diseases. Methods: The sera of patients with MOGAD (from during an attack and remission; N=19 and N=9, respectively) and AQP4-NMOSD (N=35 and N=17), and healthy controls (N=38) were analyzed for C1q-binding circulating immune complex (CIC-C1q), C1 inhibitor (C1-INH), factor H (FH), C3, iC3b, and soluble terminal complement complex (sC5b-9). Results: In attack samples, the levels of C1-INH, FH, and iC3b were higher in the MOGAD group than in the NMOSD group (all, p<0.001), while the level of sC5b-9 was increased only in the NMOSD group. In MOGAD, there were no differences in the concentrations of complement analytes based on disease status. However, within AQP4-NMOSD, remission samples indicated a higher C1-INH level than attack samples (p=0.003). Notably, AQP4-NMOSD patients on medications during attack showed lower levels of iC3b (p<0.001) and higher levels of C3 (p=0.008), C1-INH (p=0.004), and sC5b-9 (p<0.001) compared to those not on medication. Among patients not on medication at the time of attack sampling, serum MOG-IgG cell-based assay (CBA) score had a positive correlation with iC3b and C1-INH levels (rho=0.764 and p=0.010, and rho=0.629 and p=0.049, respectively), and AQP4-IgG CBA score had a positive correlation with C1-INH level (rho=0.836, p=0.003). Conclusions: This study indicates a higher prominence of complement pathway activation and subsequent C3 degradation in MOGAD compared to AQP4-NMOSD. On the other hand, the production of terminal complement complexes (TCC) was found to be more substantial in AQP4-NMOSD than in MOGAD. These findings suggest a strong regulation of the complement system, implying its potential involvement in the pathogenesis of MOGAD through mechanisms that extend beyond TCC formation.


Asunto(s)
Neuromielitis Óptica , Humanos , Acuaporina 4 , Complemento C1q , Complemento C3b , Proteínas del Sistema Complemento , Inmunoglobulina G , Glicoproteína Mielina-Oligodendrócito
4.
Methods Mol Biol ; 2761: 121-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427234

RESUMEN

Cell-based assay (CBA) is an immunofluorescence assay that is extensively used for the confirmatory diagnosis of inflammatory demyelinating diseases of the central nervous system, like neuromyelitis optica spectrum disorder (NMOSD). Detecting the type of autoantibody present in the sera of the patients is the primary goal. CBA is the most sensitive and recommended detection method among all similar tools. Briefly, serum autoantibody is screened by transfecting specific cells seeded on cover glasses with full-length specific antigen fused with green fluorescent protein (GFP), followed by treating them with the patient serum used here as the source of primary antibody. The autoantibody-treated cells are further labeled with a rhodamine-conjugated secondary antibody. The co-localization of GFP and rhodamine is visualized by confocal microscopy, and the intensity of fluorescence is evaluated to determine the presence of autoantibody. A detailed protocol to screen antibodies against AQP4 and MOG in human sera using this method is described.


Asunto(s)
Neuromielitis Óptica , Humanos , Neuromielitis Óptica/diagnóstico , Autoanticuerpos , Acuaporina 4 , Técnica del Anticuerpo Fluorescente , Glicoproteína Mielina-Oligodendrócito , Rodaminas
5.
Neuropharmacology ; 250: 109907, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492884

RESUMEN

The glymphatic system plays a crucial role in maintaining optimal central nervous system (CNS) function by facilitating the removal of metabolic wastes. Aquaporin-4 (AQP4) protein, predominantly located on astrocyte end-feet, is a key pathway for metabolic waste excretion. ß-Dystroglycan (ß-DG) can anchor AQP4 protein to the end-feet membrane of astrocytes and can be cleaved by matrix metalloproteinase (MMP)-9 protein. Studies have demonstrated that hyperglycemia upregulates MMP-9 expression in the nervous system, leading to neuropathic pain. Ginkgolide B (GB) exerts an inhibitory effect on the MMP-9 protein. In this study, we investigated whether inhibition of MMP-9-mediated ß-DG cleavage by GB is involved in the regulation of AQP4 polarity within the glymphatic system in painful diabetic neuropathy (PDN) and exerts neuroprotective effects. The PDN model was established by injecting streptozotocin (STZ). Functional changes in the glymphatic system were observed using magnetic resonance imaging (MRI). The paw withdrawal threshold (PWT) was measured to assess mechanical allodynia. The protein expressions of MMP-9, ß-DG, and AQP4 were detected by Western blotting and immunofluorescence. Our findings revealed significant decreases in the efficiency of contrast agent clearance within the spinal glymphatic system of the rats, accompanied by decreased PWT, increased MMP-9 protein expression, decreased ß-DG protein expression, and loss of AQP4 polarity. Notably, GB treatment demonstrated the capacity to ameliorate spinal cord glymphatic function by modulating AQP4 polarity through MMP-9 inhibition, offering a promising therapeutic avenue for PDN.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Ginkgólidos , Sistema Glinfático , Lactonas , Ratas , Animales , Sistema Glinfático/metabolismo , Metaloproteinasa 9 de la Matriz , Neuroprotección , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/metabolismo , Médula Espinal/metabolismo , Acuaporina 4/metabolismo
6.
Neurology ; 102(5): e209147, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38546185

RESUMEN

BACKGROUND AND OBJECTIVES: We aimed to evaluate the mortality of patients with AQP4 antibody-seropositive (AQP4-Ab+) neuromyelitis optica spectrum disorder (NMOSD) in Denmark compared with that in the general population. METHODS: We identified patients with AQP4-Ab+ NMOSD fulfilling the 2015 International Panel for Neuromyelitis Optica Diagnosis (IPND) criteria from multiple sources (laboratories and the Danish Multiple Sclerosis Registry). We obtained detailed information about patients from hospital records and about the general population matched on age, sex, and calendar year from Statistics Denmark. We calculated standardized mortality ratio (SMR), excess number of deaths per 1,000 person-years (EDR), and life expectancies compared with those of the matched general population. We examined predictive factors of mortality and the cause of death. RESULTS: Of 66 patients with AQP4-Ab+ NMOSD between 2008 and 2020, 15 died. Overall, the SMR was 2.54 (95% CI 1.47-4.09), and the EDR was 16.8 (95% CI 4.6-34.3). The median life expectancy for patients with AQP4-Ab+ NMOSD was 64.08 years (95% CI 53.02-83.9), compared with 83.07 years for the general population. Risk of death over time was increased in the patient population with a hazard ratio (HR) of 2.22 (1.34-3.68; p = 0.002). The cause of death was directly related to NMOSD in 93% of the cases. The age at disease onset was an independent predictor of death (HR 1.042; 95% CI 1.006-1.079; p = 0.02). DISCUSSION: AQP4-Ab+ NMOSD is associated with increased mortality and shorter life expectancy compared with that in the general population, underlining the need for highly effective treatment approaches.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/diagnóstico , Acuaporina 4 , Anticuerpos , Esclerosis Múltiple/complicaciones , Dinamarca/epidemiología , Autoanticuerpos
7.
Magn Reson Imaging Clin N Am ; 32(2): 233-251, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555139

RESUMEN

For over two centuries, clinicians have been aware of various conditions affecting white matter which had come to be grouped under the umbrella term multiple sclerosis. Within the last 20 years, specific scientific advances have occurred leading to more accurate diagnosis and differentiation of several of these conditions including, neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody disease. This new understanding has been coupled with advances in disease-modifying therapies which must be accurately applied for maximum safety and efficacy.


Asunto(s)
Neuromielitis Óptica , Humanos , Neuromielitis Óptica/diagnóstico por imagen , Glicoproteína Mielina-Oligodendrócito/metabolismo , Acuaporina 4 , Imagen por Resonancia Magnética/métodos , Autoanticuerpos
8.
Clin Neurol Neurosurg ; 239: 108212, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460428

RESUMEN

OBJECTIVE: A plethora of monoclonals have ushered up for NMOSD treatment. However, their limited availability and cost concerns poses a challenge for usage in developing nations. We compared relapse rates and disabilities among aquaporin-4 positive(AQP4+ve) patients on conventional immunosuppressants and rituximab in a tertiary referral center in southern India. METHODS: This was a chart review of AQP4+ve patients registered under national demyelination registry maintained at institute. AQP4+ve patients were included if they were on azathioprine, MMF, methotrexate for six months; cyclophosphamide for three months and rituximab for one month. RESULTS: 207 records were screened, 154 fulfilled inclusion criteria. Drugs used were azathioprine (70), MMF (34) and rituximab (33). All three drugs were non-inferior to each other in terms of ARR reduction. Median EDSS at last follow-up was significantly lower for azathioprine(2;IQR:0-5) and rituximab(2;IQR:0.5-5) than MMF(3.5;IQR:2-5.6), however azathioprine was associated with highest switch rate(34.3%) and was the only drug which required change because of intolerance. Failure rate was least for rituximab(27.3%).Patients on azathioprine and MMF required higher mean duration of concurrent steroids(7.8±7.7 and 4.56±2.17 months respectively) when compared to rituximab(2.77±1.38) and had more relapses due to steroid withdrawal. CONCLUSION: Initial treatment with azathioprine, MMF and rituximab is comparable in terms of ARR reduction. Findings suggest that choice may be guided by adverse event profile of drug, rather than efficacy per se. Concurrent treatment duration with steroids should also guide clinical decision. Switch to second immunomodulation in event of initial failure adds to efficacy benefit, irrespective of the drug chosen.


Asunto(s)
Azatioprina , Neuromielitis Óptica , Humanos , Azatioprina/uso terapéutico , Rituximab/uso terapéutico , Países en Desarrollo , Neuromielitis Óptica/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Acuaporina 4 , Esteroides/uso terapéutico , Estudios Retrospectivos , Recurrencia
9.
Fluids Barriers CNS ; 21(1): 28, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532513

RESUMEN

Waste from the brain has been shown to be cleared via the perivascular spaces through the so-called glymphatic system. According to this model the cerebrospinal fluid (CSF) enters the brain in perivascular spaces of arteries, crosses the astrocyte endfoot layer, flows through the parenchyma collecting waste that is subsequently drained along veins. Glymphatic clearance is dependent on astrocytic aquaporin-4 (AQP4) water channels that are highly enriched in the endfeet. Even though the polarized expression of AQP4 in endfeet is thought to be of crucial importance for glymphatic CSF influx, its role in extracellular solute clearance has only been evaluated using non-quantitative fluorescence measurements. Here we have quantitatively evaluated clearance of intrastriatally infused small and large radioactively labeled solutes in mice lacking AQP4 (Aqp4-/-) or lacking the endfoot pool of AQP4 (Snta1-/-). We confirm that Aqp4-/- mice show reduced clearance of both small and large extracellular solutes. Moreover, we find that the Snta1-/- mice have reduced clearance only for the 500 kDa [3H]dextran, but not 0.18 kDa [3H]mannitol suggesting that polarization of AQP4 to the endfeet is primarily important for clearance of large, but not small molecules. Lastly, we observed that clearance of 500 kDa [3H]dextran increased with age in adult mice. Based on our quantitative measurements, we confirm that presence of AQP4 is important for clearance of extracellular solutes, while the perivascular AQP4 localization seems to have a greater impact on clearance of large versus small molecules.


MAIN POINTS: Solute clearance is reduced in mice lacking AQP4 Polarization of AQP4 to the endfeet may have a greater impact on clearance of large versus small molecules Clearance of large but not small solutes is correlated with age within adult age.


Asunto(s)
Dextranos , Sistema Glinfático , Animales , Ratones , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Dextranos/metabolismo , Sistema Glinfático/metabolismo
10.
Biochemistry ; 63(7): 855-864, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498694

RESUMEN

AQP4-IgG is an autoantibody associated with neuromyelitis optica spectroscopic disorder (NMOSD), a central nervous system inflammatory disease that requires early diagnosis and treatment. We designed two fusion proteins, AQP4-DARPin1 and AQP4-DARPin2, comprising the complete antigenic epitopes of aquaporin-4 (AQP4) and the constant region of the scaffold protein DARPin. These fusion proteins were expressed and purified from Escherichia coli and coated on microplates to develop an efficient method for detecting AQP4-IgG. Molecular dynamics simulation revealed that the fusion of AQP4 extracellular epitopes with DARPin did not alter the main structure of DARPin. The purified AQP4-DARPins bound recombinant antibody rAb-53 (AQP4-IgG) with affinities of 135 and 285 nM, respectively. Enzyme-linked immunosorbent assay (ELISA) and immunoprecipitation demonstrated that AQP4-DARPin1 specifically recognized AQP4-IgG in the NMOSD patient serum. AQP4-DARPin1 as a coated antigen showed higher ELISA signal and end point dilution ratio than full-length AQP4. Our AQP4-DARPin1-coated AQP4-IgG ELISA had 100% specificity and 90% sensitivity. These results indicate that AQP4-DARPin1, compared to existing detection strategies that use full-length or extracellular loop peptides of AQP4, provides a new and more effective approach to the ELISA detection of NMOSD.


Asunto(s)
Neuromielitis Óptica , Humanos , Neuromielitis Óptica/diagnóstico , Proteínas de Repetición de Anquirina Diseñadas , Acuaporina 4/genética , Epítopos , Inmunoglobulina G
12.
Physiol Behav ; 278: 114521, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492911

RESUMEN

Epilepsy is a neurological condition distinguished by recurrent and unexpected seizures. Astrocytic channels and transporters are essential for maintaining normal neuronal functionality. The astrocytic water channel, aquaporin-4 (AQP4), which plays a pivotal role in regulating water homeostasis, is a potential target for epileptogenesis. In present study, we examined the effect of different doses (10, 50, 100 µM and 5 mM) of AQP4 inhibitor, 2-nicotinamide-1, 3, 4-thiadiazole (TGN-020), during kindling acquisition, on seizure parameters and seizure-induced cognitive impairments. Animals were kindled by injection of pentylenetetrazole (PTZ: 37.5 mg/kg, i.p.). TGN-020 was administered into the right lateral cerebral ventricle 30 min before PTZ every alternate day. Seizure parameters were assessed 20 min after PTZ administration. One day following the last PTZ injection, memory performance was investigated using spontaneous alternation in Y-maze and novel object recognition (NOR) tests. The inhibition of AQP4 during the kindling process significantly decreased the maximal seizure stage and seizure duration (two-way ANOVA, P = 0.0001) and increased the latency of seizure onset and the number of PTZ injections required to induce different seizure stages (one-way ANOVA, P = 0.0001). Compared to kindled rats, the results of the NOR tests showed that AQP4 inhibition during PTZ-kindling prevented recognition memory impairment. Based on these results, AQP4 could be involved in seizure development and seizure-induced cognitive impairment. More investigation is required to fully understand the complex interactions between seizure activity, water homeostasis, and cognitive dysfunction, which may help identify potential therapeutic targets for these conditions.


Asunto(s)
Acuaporina 4 , Disfunción Cognitiva , Excitación Neurológica , Niacinamida , Tiadiazoles , Animales , Ratas , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Niacinamida/administración & dosificación , Niacinamida/análogos & derivados , Pentilenotetrazol , Convulsiones/inducido químicamente , Convulsiones/complicaciones , Convulsiones/tratamiento farmacológico , Tiadiazoles/administración & dosificación , Agua/efectos adversos , Acuaporina 4/antagonistas & inhibidores
13.
Methods Mol Biol ; 2754: 351-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512676

RESUMEN

Glymphatic system denotes a brain-wide pathway that eliminates extracellular solutes from brain. It is driven by the flow of brain interstitial fluid (ISF) and cerebrospinal fluid (CSF) via perivascular spaces. Glymphatic convective flow is driven by cerebral arterial pulsation, which is facilitated by a water channel, aquaporin-4 (AQP4) expressed in astrocytic end-foot processes. Since its discovery, the glymphatic system receives a considerable scientific attention due to its pivotal role in clearing metabolic waste as well as neurotoxic substances such as amyloid b peptide. Tau is a microtubule binding protein, however it is also physiologically released into extracellular fluids. The presence of tau in the blood stream indicates that it is eventually cleared from the brain to the periphery, however, the detailed mechanisms that eliminate extracellular tau from the central nervous system remained to be elucidated. Recently, we and others have reported that extracellular tau is eliminated from the brain to CSF by an AQP4 dependent mechanism, suggesting the involvement of the glymphatic system. In this chapter, we describe the detailed protocol of how we can assess glymphatic outflow of tau protein from brain to CSF in mice.


Asunto(s)
Sistema Glinfático , Proteínas tau , Ratones , Animales , Proteínas tau/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Acuaporina 4/metabolismo , Líquido Cefalorraquídeo/metabolismo
14.
Int Ophthalmol ; 44(1): 138, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488890

RESUMEN

PURPOSE: Optic neuritis (ON) is a relatively common ophthalmic disease that has recently received renewed attention owing to immunological breakthroughs. We studied the profile of patients with ON with special reference to antibody-mediated ON and the challenges faced in its management. METHODS: Case records of patients with ON presenting to a tertiary eye-care center in South India were analyzed. Data on demographics, presenting visual acuity (VA), clinical features, seropositivity for aquaporin-4 immunoglobulin G (AQP4-IgG) and myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-IgG), details of magnetic resonance imaging (MRI) of orbits and brain, and treatment were collected. RESULTS: Among 138 cases with acute ON, male: female ratio was 1:2. Isolated ON was present in 41.3% of cases. Antibody testing of sera was performed in 68 patients only due to financial limitations. Among these, 48.5% were MOG-IgG-seropositive, 11.76% were AQP4-IgG-seropositive, and 30.88% samples were double seronegative. Other causes included multiple sclerosis (n = 4), lactational ON (n = 4), tuberculosis (n = 2), invasive perineuritis (n = 2), COVID-19 vaccination (n = 2), and COVID-19 (n = 1). The mean presenting best corrected visual acuity (BCVA) was 1.31 ± 1.16 logMAR (logarithm of the minimum angle of resolution). The mean BCVA at 3 months was 0.167 ± 0.46 logMAR. Only initial VA ≤ 'Counting fingers' (CF) had a significant association with the visual outcome for final VA worse than CF. The steep cost of investigations and treatment posed challenges for many patients in the management of ON. CONCLUSION: MOG-IgG-associated ON is common in India. Unfortunately, financial constraints delay the diagnosis and timely management of ON, adversely affecting the outcome.


Asunto(s)
COVID-19 , Neuromielitis Óptica , Neuritis Óptica , Humanos , Masculino , Femenino , Vacunas contra la COVID-19/uso terapéutico , Autoanticuerpos/uso terapéutico , Neuritis Óptica/terapia , Neuritis Óptica/tratamiento farmacológico , Acuaporina 4/uso terapéutico , Inmunoglobulina G/uso terapéutico
15.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542152

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD) is a rare, disabling inflammatory disease of the central nervous system (CNS). Aquaporin-4 (AQP4)-specific T cells play a key role in the pathogenesis of NMOSD. In addition to immune factors, T cells recognizing the AQP4 epitope showed cross-reactivity with homologous peptide sequences in C. perfringens proteins, suggesting that the gut microbiota plays an integral role in the pathogenicity of NMOSD. In this review, we summarize research on the involvement of the gut microbiota in the pathophysiology of NMOSD and its possible pathogenic mechanisms. Among them, Clostridium perfringens and Streptococcus have been confirmed to play a role by multiple studies. Based on this evidence, metabolites produced by gut microbes, such as short-chain fatty acids (SCFAs), tryptophan (Trp), and bile acid (BA) metabolites, have also been found to affect immune cell metabolism. Therefore, the role of the gut microbiota in the pathophysiology of NMOSD is very important. Alterations in the composition of the gut microbiota can lead to pathological changes and alter the formation of microbiota-derived components and metabolites. It can serve as a biomarker for disease onset and progression and as a potential disease-modifying therapy.


Asunto(s)
Microbioma Gastrointestinal , Neuromielitis Óptica , Humanos , Acuaporina 4 , Linfocitos T , Sistema Nervioso Central , Autoanticuerpos
16.
Front Immunol ; 15: 1351782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426084

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD) is a rare demyelinating disease of the central nervous system primarily affecting the optic nerves, spinal cord, and brainstem. Viral infection may trigger NMOSD. Here, we report the case of a 34-year-old female presenting with a range of symptoms including nausea, vomiting, dysphagia, choking, and fatigue with unsteady gait, diplopia, hearing loss, left-sided facial paralysis, breathing difficulties, and hoarseness of voice. Her HBV DNA concentration, as determined by quantitative PCR analysis, exceeded 5×107 IU/ml in serum and 4.48×102 IU/ml in CSF. Next-generation sequencing of CSF revealed 1,528 HBV sequences in DNA analysis and 6 sequences in RNA analysis. Serum aquaporin-4 antibody (AQP4-Ab) titer was 1:10, and the CSF titer was 1:3.2. Brain magnetic resonance imaging showed high signal intensities in the brain stem, medulla oblongata, and left middle cerebellar peduncle with mild restricted-diffusion. The patient received antiviral and hepatoprotective medications before the high-dose methylprednisolone pulse therapy. However, the patient did not respond well to the first-line treatment. Subsequently, the patient received ofatumumab and inebilizumab. Throughout the follow-up period, there was a gradual improvement in her neurological symptoms, with no reactivation of hepatitis B or deterioration of liver function observed. Thereby, to the best of our knowledge, we report the first case of successful treatment with ofatumumab and inebilizumab in a patient with NMOSD concurrent with HBV infection.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neuromielitis Óptica , Humanos , Femenino , Adulto , Neuromielitis Óptica/diagnóstico , Neuromielitis Óptica/tratamiento farmacológico , Virus de la Hepatitis B/genética , Acuaporina 4
17.
Mult Scler Relat Disord ; 84: 105502, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401202

RESUMEN

BACKGROUND: Satralizumab, a humanized anti-interleukin-6 receptor monoclonal antibody, has been approved globally for the treatment of neuromyelitis optica spectrum disorder (NMOSD), based on positive results from two randomized, double-blind, phase 3 studies: SAkuraSky (NCT02028884) and SAkuraStar (NCT02073279). There remains an unmet need to understand the real-world management of NMOSD, especially in patients undergoing tapering of concomitant therapy. We examined real-world treatment patterns, including concomitant glucocorticoids and immunosuppressants, and relapse in satralizumab-treated patients with NMOSD, using a Japanese administrative hospital claims database. METHODS: We used retrospective data from the Medical Data Vision hospital-based administrative claims database. The index date was the date of first satralizumab prescription and the study period was set between August 2018 and March 2022. Patients were included in the overall population if they had a first prescription for satralizumab between August 2020 and March 2022, an International Classification of Disease, Version10 code of G36.0 prior to March 2022, and were observable for ≥90 days prior to the index date. The primary endpoint was the percentage of patients with relapse-free reduction of oral glucocorticoids to 0 mg/day at 360 days of continued satralizumab treatment. Secondary endpoints included time to relapse, number of relapses after the index date while being on continuous satralizumab treatment, annualized relapse rate before and after the index date, and concomitant medication use. Relapse and dose reduction were identified using definition specifically developed for this study. RESULTS: Of the 131 patients included in the overall population, most were female (90.8 %), aged 18-65 years (75.6 %), and were prescribed oral glucocorticoids (93.1 %). Azathioprine (19.1 %) and tacrolimus, a calcineurin inhibitor (18.3 %), were the most common immunosuppressants at index date. Six (4.6 %) patients had a history of biologic use (tocilizumab, 1 [0.8 %]; eculizumab, 5 [3.8 %]). Among 111 patients observable for 360 days pre-index, there were 0.6 ± 0.8 (mean ± SD) relapses during 360 days before the index date. The median (interquartile range) duration of satralizumab exposure was 197.0 (57.0-351.0) days. Most (125/131; 95.4 %) patients were relapse-free post-index; 6 (4.6 %) patients relapsed within 90 days after the index date, of which 2 had the first relapse within 7 days after the index date. Among 21 patients with 360-day follow-up, 6 (28.6 %) patients were on 0 mg/day dose of glucocorticoid prescription without relapse 360 days post-index. Of these 6 patients, 2 had no prescription of oral glucocorticoids at the index date and remained glucocorticoid- and relapse-free 360 days after the index date. CONCLUSION: These real-world data support the phase 3 clinical trials. Our results, over a median duration of satralizumab exposure of 197.0 days, showed that a majority (125/131, 95.4 %) of patients were relapse-free after initiating satralizumab treatment. The number of glucocorticoid-free patients without relapse increased over time under continuous satralizumab prescription. Further studies are needed to confirm if satralizumab can be used as a potential immunosuppressant- and glucocorticoid-sparing agent.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neuromielitis Óptica , Femenino , Humanos , Masculino , Anticuerpos Monoclonales/uso terapéutico , Acuaporina 4 , Enfermedad Crónica , Glucocorticoides/uso terapéutico , Inmunosupresores/uso terapéutico , Japón , Recurrencia , Estudios Retrospectivos
18.
Am J Case Rep ; 25: e942475, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38303503

RESUMEN

BACKGROUND Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSDs) are 2 similar but distinct diseases. These diseases were difficult to distinguish from each other until aquaporin-4-IgG (AQP-4-IgG) was discovered. The accurate identification of these 2 diseases is crucial for appropriate drug treatment in clinical practice. Herein, we report a case of AQP-4-IgG seroconversion with magnetic resonance imaging (MRI) findings suggestive of MS. CASE REPORT A 54-year-old woman developed weakness in her right lower extremity that gradually returned to normal 4 years ago. Recently, she was admitted to the hospital for numbness and weakness of both lower limbs and the right upper limb for more than 10 days. The clinical and MRI features of the patient suggested a high susceptibility for misdiagnosis of MS. However, careful observation of the MRI revealed the presence of atypical MS lesions ("red flag" signs), indicating the possibility of other diagnoses in this patient. After further examination, serum AQP-4-IgG was detected, suggesting the potential presence of another disorder, NMOSD, in the patient. CONCLUSIONS Attention should be given to the identification of MS MRI "red flag" signs. Even for patients with a high suspicion of MS, it is necessary to conduct antibody tests for AQP-4-IgG, MOG-IgG and other relevant markers to screen for associated diseases because MS disease-modifying therapy approaches may lead to a deterioration in the state of NMOSD patients. Analyzing this case can help us to further distinguish the differences between these 2 types of diseases, which has important practical clinical value.


Asunto(s)
Esclerosis Múltiple , Femenino , Humanos , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito , Autoanticuerpos , Acuaporina 4 , Neuroimagen , Inmunoglobulina G
19.
Anticancer Res ; 44(2): 567-573, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38307548

RESUMEN

BACKGROUND/AIM: Aquaporins (AQPs) were initially discovered as water channel proteins that facilitate transcellular water movements. Recent studies have shown that AQPs are expressed and play an oncogenic role in various cancers. However, the expression and role of Aquaporin 4 (AQP4) in colon cancer have not been investigated. This study aimed to examine the clinical and pathophysiologic significance of AQP4 in colon cancer. PATIENTS AND METHODS: Immunohistochemistry (IHC) of AQP4 for 145 primary tumor samples obtained from patients with stage II or III colon cancer was performed, and the relationship between AQP4 expression and patients' prognoses was analyzed. Knockdown experiments with AQP4 small interfering RNA using human colon cancer cells were conducted to analyze the effects on cell invasiveness. RESULTS: IHC revealed that AQP4 was scarcely expressed in the noncancerous colonic mucosa. Of the 145 patients who enrolled in this study, 109 (75.2%) and 36 (24.8%) patients were classified as negative and positive for AQP4 expression, respectively. A high level of AQP4 expression is significantly associated with deeper tumors with lymph node metastasis and venous invasion. A 5-year progression-free survival rate of AQP4-positive patients was significantly worse than that of AQP-4 negative patients (70.7% vs. 87.0%, p=0.049). Furthermore, AQP4 knockdown significantly inhibited cell migration and invasion in HCT116 cells. CONCLUSION: AQP4 may be a novel biomarker and therapeutic target for colon cancer.


Asunto(s)
Acuaporina 4 , Neoplasias del Colon , Humanos , Acuaporina 4/genética , Acuaporina 4/metabolismo , ARN Interferente Pequeño/genética , Inmunohistoquímica , Neoplasias del Colon/genética , Acuaporina 1/genética , Acuaporina 1/metabolismo
20.
BMC Neurol ; 24(1): 62, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347476

RESUMEN

BACKGROUND: T1 hypointense lesions are considered a surrogate marker of tissue destruction. Although there is a shortage of evidence about T1 hypointense brain lesions, black holes, in patients with Neuromyelitis Optica Spectrum Disorder (NMOSD), the clinical significance of these lesions is not well determined. OBJECTIVES: The impact of T1 hypointense brain lesions on the clinical status and the disability level of patients with NMOSD was sought in this study. METHODS: A total of 83 patients with the final diagnosis of NMOSD were recruited. Aquaporin-4 measures were collected. The expanded disability status scale (EDSS) and MRI studies were also extracted. T1 hypointense and T2/FLAIR hyperintense lesions were investigated. The correlation of MRI findings, AQP-4, and EDSS was assessed. RESULTS: T1 hypointense brain lesions were detected in 22 patients. Mean ± SD EDSS was 3.7 ± 1.5 and significantly higher in patients with brain T1 hypointense lesions than those without them (p-value = 0.01). Noticeably, patients with more than four T1 hypointense lesions had EDSS scores ≥ 4. The presence of T2/FLAIR hyperintense brain lesions correlated with EDSS (3.6 ± 1.6 vs 2.3 ± 1.7; p-value = 0.01). EDSS was similar between those with and without positive AQP-4 (2.7 ± 1.6 vs. 3.2 ± 1.7; p-value = 0.17). Also, positive AQP-4 was not more prevalent in patients with T1 hypointense brain lesions than those without them (50.9 vs 45.4%; p-value = 0.8). CONCLUSION: We demonstrated that the presence of the brain T1-hypointense lesions corresponds to a higher disability level in NMOSD.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Neuromielitis Óptica/diagnóstico por imagen , Neuromielitis Óptica/patología , Estudios Transversales , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética , Acuaporina 4 , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...